Thomas Alva Edison
In Menlo Park, NJ

Edison in 1878

 

EDISON
HIS LIFE AND INVENTIONS

BY

FRANK LEWIS DYER
GENERAL COUNSEL FOR THE EDISON LABORATORY
AND ALLIED INTERESTS

AND

THOMAS COMMERFORD MARTIN
EX-PRESIDENT OF THE AMERICAN INSTITUTE
OF ELECTRICAL ENGINEERS

Published in New York by Harper Brothers, 1929

 

AUTOMATIC, DUPLEX, AND QUADRUPLEX TELEGRAPHY

WORK of various kinds poured in upon the young manufacturer, busy also with his own schemes and inventions, which soon began to follow so many distinct lines of inquiry that it ceases to be easy or necessary for the historian to treat them all in chronological sequence. Some notion of his ceaseless activity may be formed from the fact that he started no fewer than three shops in Newark during 1870-71, and while directing these was also engaged by the men who controlled the Automatic Telegraph Company of New York, which had a circuit to Washington, to help it out of its difficulties. "Soon after starting the large shop (10 and 12 Ward Street, Newark), I rented shop-room to the inventor of a new rifle. I think it was the Berdan. In any event, it was a rifle which was subsequently adopted by the British Army. The inventor employed a tool-maker who was the finest and best tool-maker I had ever seen. I noticed that he worked pretty near the whole of the twenty-four hours. This kind of application I was looking for. He was getting $21.50 per week, and was also paid for overtime. I asked him if he could run the shop. `I don't know; try me!' he said. `All right, I will give you $60 per week to run both shifts.' He went at it. His executive ability was greater than that of any other man I have yet seen. His memory was prodigious, conversation laconic, and movements rapid. He doubled the production inside three months, without materially increasing the pay-roll, by increasing the cutting speeds of tools, and by the use of various devices. When in need of rest he would lie down on a work-bench, sleep twenty or thirty minutes, and wake up fresh. As this was just what I could do, I naturally conceived a great pride in having such a man in charge of my work. But almost everything has trouble connected with it. He disappeared one day, and although I sent men everywhere that it was likely he could be found, he was not discovered. After two weeks he came into the factory in a terrible condition as to clothes and face. He sat down and, turning to me, said: `Edison, it's no use, this is the third time; I can't stand prosperity. Put my salary back and give me a job.' I was very sorry to learn that it was whiskey that spoiled such a career. I gave him an inferior job and kept him for a long time."

Edison had now entered definitely upon that career as an inventor which has left so deep an imprint on the records of the United States Patent Office, where from his first patent in 1869 up to the summer of 1910 no fewer than 1328 separate patents have been applied for in his name, averaging thirty-two every year, and one about every eleven days; with a substantially corresponding number issued. The height of this inventive activity was attained about 1882, in which year no fewer than 141 pat- ents were applied for, and seventy-five granted to him, or nearly nine times as many as in 1876, when invention as a profession may be said to have been adopted by this prolific genius. It will be understood, of course, that even these figures do not represent the full measure of actual invention, as in every process and at every step there were many discoveries that were not brought to patent registration, but remained "trade secrets." And furthermore, that in practically every case the actual patented invention followed from one to a dozen or more gradually developing forms of the same idea.

An Englishman named George Little had brought over a system of automatic telegraphy which worked well on a short line, but was a failure when put upon the longer circuits for which automatic methods are best adapted. The general principle involved in automatic or rapid telegraphs, except the photographic ones, is that of preparing the message in advance, for dispatch, by perforating narrow strips of paper with holes--work which can be done either by hand-punches or by typewriter apparatus. A certain group of perforations corresponds to a Morse group of dots and dashes for a letter of the alphabet. When the tape thus made ready is run rapidly through a transmitting machine, electrical contact occurs wherever there is a perforation, permitting the current from the battery to flow into the line and thus transmit signals correspondingly. At the distant end these signals are received sometimes on an ink-writing recorder as dots and dashes, or even as typewriting letters; but in many of the earlier systems, like that of Bain, the record at the higher rates of speed was effected by chemical means, a tell-tale stain being made on the travelling strip of paper by every spurt of incoming current. Solutions of potassium iodide were frequently used for this purpose, giving a sharp, blue record, but fading away too rapidly.

The Little system had perforating apparatus operated by electromagnets; its transmitting machine was driven by a small electromagnetic motor; and the record was made by electrochemical decomposition, the writing member being a minute platinum roller instead of the more familiar iron stylus. Moreover, a special type of wire had been put up for the single circuit of two hundred and eighty miles between New York and Washington. This is believed to have been the first "compound" wire made for telegraphic or other signalling purposes, the object being to secure greater lightness with textile strength and high conductivity. It had a steel core, with a copper ribbon wound spirally around it, and tinned to the core wire. But the results obtained were poor, and in their necessity the parties in interest turned to Edison.

Mr. E. H. Johnson tells of the conditions: "Gen. W. J. Palmer and some New York associates had taken up the Little automatic system and had expended quite a sum in its development, when, thinking they had reduced it to practice, they got Tom Scott, of the Pennsylvania Railroad to send his superintendent of telegraph over to look into and report upon it. Of course he turned it down. The syndicate was appalled at this report, and in this extremity General Palmer thought of the man who had impressed him as knowing it all by the telling of telegraphic tales as a means of whiling away lonesome hours on the plains of Colorado, where they were associated in railroad-building. So this man-- it was I--was sent for to come to New York and assuage their grief if possible. My report was that the system was sound fundamentally, that it contained the germ of a good thing, but needed working out. Associated with General Palmer was one Col. Josiah C. Reiff, then Eastern bond agent for the Kansas Pacific Railroad. The Colonel was always resourceful, and didn't fail in this case. He knew of a young fellow who was doing some good work for Marshall Lefferts, and who it was said was a genius at invention, and a very fiend for work. His name was Edison, and he had a shop out at Newark, New Jersey. He came and was put in my care for the purpose of a mutual exchange of ideas and for a report by me as to his competency in the matter. This was my introduction to Edison. He confirmed my views of the automatic system. He saw its possibilities, as well as the chief obstacles to be overcome--viz., the sluggishness of the wire, together with the need of mechanical betterment of the apparatus; and he agreed to take the job on one condition--namely, that Johnson would stay and help, as `he was a man with ideas.' Mr. Johnson was accordingly given three months' leave from Colorado railroad-building, and has never seen Colorado since."

Applying himself to the difficulties with wonted energy, Edison devised new apparatus, and solved the problem to such an extent that he and his as- sistants succeeded in transmitting and recording one thousand words per minute between New York and Washington, and thirty-five hundred words per minute to Philadelphia. Ordinary manual transmission by key is not in excess of forty to fifty words a minute. Stated very briefly, Edison's principal contribution to the commercial development of the automatic was based on the observation that in a line of considerable length electrical impulses become enormously extended, or sluggish, due to a phenomenon known as self-induction, which with ordinary Morse work is in a measure corrected by condensers. But in the automatic the aim was to deal with impulses following each other from twenty-five to one hundred times as rapidly as in Morse lines, and to attempt to receive and record intelligibly such a lightning-like succession of signals would have seemed impossible. But Edison discovered that by utilizing a shunt around the receiving instrument, with a soft iron core, the self-induction would produce a momentary and instantaneous reversal of the current at the end of each impulse, and thereby give an absolutely sharp definition to each signal. This discovery did away entirely with sluggishness, and made it possible to secure high speeds over lines of comparatively great lengths. But Edison's work on the automatic did not stop with this basic suggestion, for he took up and perfected the mechanical construction of the instruments, as well as the perforators, and also suggested numerous electrosensitive chemicals for the receivers, so that the automatic telegraph, almost entirely by reason of his individual work, was placed on a plane of commercial practicability. The long line of patents secured by him in this art is an interesting exhibit of the development of a germ to a completed system, not, as is usually the case, by numerous inventors working over considerable periods of time, but by one man evolving the successive steps at a white heat of activity.

This system was put in commercial operation, but the company, now encouraged, was quite willing to allow Edison to work out his idea of an automatic that would print the message in bold Roman letters instead of in dots and dashes; with consequent gain in speed in delivery of the message after its receipt in the operating-room, it being obviously necessary in the case of any message received in Morse characters to copy it in script before delivery to the recipient. A large shop was rented in Newark, equipped with $25,000 worth of machinery, and Edison was given full charge. Here he built their original type of apparatus, as improved, and also pushed his experiments on the letter system so far that at a test, between New York and Philadelphia, three thousand words were sent in one minute and recorded in Roman type. Mr. D. N. Craig, one of the early organizers of the Associated Press, became interested in this company, whose president was Mr. George Harrington, formerly Assistant Secretary of the United States Treasury.

Mr. Craig brought with him at this time--the early seventies--from Milwaukee a Mr. Sholes, who had a wooden model of a machine to which had been given the then new and unfamiliar name of "typewriter." Craig was interested in the machine, and put the model in Edison's hands to perfect. "This typewriter proved a difficult thing," says Edison, "to make commercial. The alignment of the letters was awful. One letter would be one-sixteenth of an inch above the others; and all the letters wanted to wander out of line. I worked on it till the machine gave fair results.[3] Some were made and used in the office of the Automatic company. Craig was very sanguine that some day all business letters would be written on a typewriter. He died before that took place; but it gradually made its way. The typewriter I got into commercial shape is now known as the Remington. About this time I got an idea I could devise an apparatus by which four messages could simultaneously be sent over a single wire without interfering with each other. I now had five shops, and with experimenting on this new scheme I was pretty busy; at least I did not have ennui."

[3] See illustration on opposite page, showing reproduction of the work done with this machine.

A very interesting picture of Mr. Edison at this time is furnished by Mr. Patrick B. Delany, a well-known inventor in the field of automatic and multiplex telegraphy, who at that time was a chief operator of the Franklin Telegraph Company at Philadelphia. His remark about Edison that "his ingenuity inspired confidence, and wavering financiers stiffened up when it became known that he was to develop the automatic" is a noteworthy evidence of the manner in which the young inventor had already gained a firm footing. He continues: "Edward H. Johnson was brought on from the Denver & Rio Grande Railway to assist in the practical introduction of automatic telegraphy on a commercial basis, and about this time, in 1872, I joined the enterprise. Fairly good results were obtained between New York and Washington, and Edison, indifferent to theoretical difficulties, set out to prove high speeds between New York and Charleston, South Carolina, the compound wire being hitched up to one of the Southern & Atlantic wires from Washington to Charleston for the purpose of experimentation. Johnson and I went to the Charleston end to carry out Edison's plans, which were rapidly unfolded by telegraph every night from a loft on lower Broadway, New York. We could only get the wire after all business was cleared, usually about midnight, and for months, in the quiet hours, that wire was subjected to more electrical acrobatics than any other wire ever experienced. When the experiments ended, Edison's system was put into regular commercial operation between New York and Washington; and did fine work. If the single wire had not broken about every other day, the venture would have been a financial success; but moisture got in between the copper ribbon and the steel core, setting up galvanic action which made short work of the steel. The demonstration was, however, sufficiently successful to impel Jay Gould to contract to pay about $4,000,000 in stock for the patents. The contract was never completed so far as the $4,000,000 were concerned, but Gould made good use of it in getting control of the Western Union."

One of the most important persons connected with the automatic enterprise was Mr. George Harrington, to whom we have above referred, and with whom Mr. Edison entered into close confidential relations, so that the inventions made were held jointly, under a partnership deed covering "any inventions or improvements that may be useful or desired in automatic telegraphy." Mr. Harrington was assured at the outset by Edison that while the Little perforator would give on the average only seven or eight words per minute, which was not enough for commercial purposes, he could devise one giving fifty or sixty words, and that while the Little solution for the receiving tape cost $15 to $17 per gallon, he could furnish a ferric solution costing only five or six cents per gallon. In every respect Edison "made good," and in a short time the system was a success, "Mr. Little having withdrawn his obsolete perforator, his ineffective resistance, his costly chemical solution, to give place to Edison's perforator, Edison's resistance and devices, and Edison's solution costing a few cents per gallon. But," continues Mr. Harrington, in a memorable affidavit, "the inventive efforts of Mr. Edison were not confined to automatic telegraphy, nor did they cease with the opening of that line to Washington." They all led up to the quadruplex.

Flattered by their success, Messrs. Harrington and Reiff, who owned with Edison the foreign patents for the new automatic system, entered into an arrangement with the British postal telegraph authorities for a trial of the system in England, involving its probable adoption if successful. Edison was sent to England to make the demonstration, in 1873, reporting there to Col. George E. Gouraud, who had been an associate in the United States Treasury with Mr. Harrington, and was now connected with the new enterprise. With one small satchel of clothes, three large boxes of instruments, and a bright fellow- telegrapher named Jack Wright, he took voyage on the Jumping Java, as she was humorously known, of the Cunard line. The voyage was rough and the little Java justified her reputation by jumping all over the ocean. "At the table," says Edison, "there were never more than ten or twelve people. I wondered at the time how it could pay to run an ocean steamer with so few people; but when we got into calm water and could see the green fields, I was astounded to see the number of people who appeared. There were certainly two or three hundred. I learned afterward that they were mostly going to the Vienna Exposition. Only two days could I get on deck, and on one of these a gentleman had a bad scalp wound from being thrown against the iron wall of a small smoking-room erected over a freight hatch."

Arrived in London, Edison set up his apparatus at the Telegraph Street headquarters, and sent his companion to Liverpool with the instruments for that end. The condition of the test was that he was to send from Liverpool and receive in London, and to record at the rate of one thousand words per minute, five hundred words to be sent every half hour for six hours. Edison was given a wire and batteries to operate with, but a preliminary test soon showed that he was going to fail. Both wire and batteries were poor, and one of the men detailed by the authorities to watch the test remarked quietly, in a friendly way: "You are not going to have much show. They are going to give you an old Bridgewater Canal wire that is so poor we don't work it, and a lot of `sand batteries' at Liverpool."[4] The situation was rather depressing to the young American thus encountering, for the first time, the stolid conservatism and opposition to change that characterizes so much of official life and methods in Europe. "I thanked him," says Edison, "and hoped to reciprocate somehow. I knew I was in a hole. I had been staying at a little hotel in Covent Garden called the Hummums! and got nothing but roast beef and flounders, and my imagination was getting into a coma. What I needed was pastry. That night I found a French pastry shop in High Holborn Street and filled up. My imagination got all right. Early in the morning I saw Gouraud, stated my case, and asked if he would stand for the purchase of a powerful battery to send to Liverpool. He said `Yes.' I went immediately to Apps on the Strand and asked if he had a powerful battery. He said he hadn't; that all that he had was Tyndall's Royal Institution battery, which he supposed would not serve. I saw it--one hundred cells--and getting the price--one hundred guineas-- hurried to Gouraud. He said `Go ahead.' I telegraphed to the man in Liverpool. He came on, got the battery to Liverpool, set up and ready, just two hours before the test commenced. One of the principal things that made the system a success was that the line was put to earth at the sending end through a magnet, and the extra current from this, passed to the line, served to sharpen the recording waves. This new battery was strong enough to pass a powerful current through the magnet without materially diminishing the strength of the line current."

[4] The sand battery is now obsolete. In this type, the cell containing the elements was filled with sand, which was kept moist with an electrolyte.

The test under these more favorable circumstances was a success. "The record was as perfect as copper plate, and not a single remark was made in the `time lost' column." Edison was now asked if he thought he could get a greater speed through submarine cables with this system than with the regular methods, and replied that he would like a chance to try it. For this purpose, twenty-two hundred miles of Brazilian cable then stored under water in tanks at the Greenwich works of the Telegraph Construction & Maintenance Company, near London, was placed at his disposal from 8 P.M. until 6 A.M. "This just suited me, as I preferred night-work. I got my apparatus down and set up, and then to get a preliminary idea of what the distortion of the signal would be, I sent a single dot, which should have been recorded upon my automatic paper by a mark about one-thirty-second of an inch long. Instead of that it was twenty-seven feet long! If I ever had any conceit, it vanished from my boots up. I worked on this cable more than two weeks, and the best I could do was two words per minute, which was only one-seventh of what the guaranteed speed of the cable should be when laid. What I did not know at the time was that a coiled cable, owing to induction, was infinitely worse than when laid out straight, and that my speed was as good as, if not better than, with the regular system; but no one told me this." While he was engaged on these tests Colonel Gouraud came down one night to visit him at the lonely works, spent a vigil with him, and toward morning wanted coffee. There was only one little inn near by, frequented by longshoremen and employees from the soap-works and cement-factories --a rough lot--and there at daybreak they went as soon as the other customers had left for work. "The place had a bar and six bare tables, and was simply infested with roaches. The only things that I ever could get were coffee made from burnt bread, with brown molasses-cake. I ordered these for Gouraud. The taste of the coffee, the insects, etc., were too much. He fainted. I gave him a big dose of gin, and this revived him. He went back to the works and waited until six when the day men came, and telegraphed for a carriage. He lost all interest in the experiments after that, and I was ordered back to America." Edison states, however, that the automatic was finally adopted in England and used for many years; indeed, is still in use there. But they took whatever was needed from his system, and he "has never had a cent from them."

Arduous work was at once resumed at home on duplex and quadruplex telegraphy, just as though there had been no intermission or discouragement over dots twenty-seven feet long. A clue to his activity is furnished in the fact that in 1872 he had applied for thirty-eight patents in the class of teleg- raphy, and twenty-five in 1873; several of these being for duplex methods, on which he had experimented. The earlier apparatus had been built several years prior to this, as shown by a curious little item of news that appeared in the Telegrapher of January 30, 1869: "T. A. Edison has resigned his situation in the Western Union office, Boston, and will devote his time to bringing out his inventions." Oh, the supreme, splendid confidence of youth! Six months later, as we have seen, he had already made his mark, and the same journal, in October, 1869, could say: "Mr. Edison is a young man of the highest order of mechanical talent, combined with good scientific electrical knowledge and experience. He has already invented and patented a number of valuable and useful inventions, among which may be mentioned the best instrument for double transmission yet brought out." Not bad for a novice of twenty-two. It is natural, therefore, after his intervening work on indicators, stock tickers, automatic telegraphs, and typewriters, to find him harking back to duplex telegraphy, if, indeed, he can be said to have dropped it in the interval. It has always been one of the characteristic features of Edison's method of inventing that work in several lines has gone forward at the same time. No one line of investigation has ever been enough to occupy his thoughts fully; or to express it otherwise, he has found rest in turning from one field of work to another, having absolutely no recreations or hobbies, and not needing them. It may also be said that, once entering it, Mr. Edison has never abandoned any field of work. He may change the line of attack; he may drop the subject for a time; but sooner or later the note-books or the Patent Office will bear testimony to the reminiscent outcropping of latent thought on the matter. His attention has shifted chronologically, and by process of evolution, from one problem to another, and some results are found to be final; but the interest of the man in the thing never dies out. No one sees more vividly than he the fact that in the interplay of the arts one industry shapes and helps another, and that no invention lives to itself alone.

The path to the quadruplex lay through work on the duplex, which, suggested first by Moses G. Farmer in 1852, had been elaborated by many ingenious inventors, notably in this country by Stearns, before Edison once again applied his mind to it. The different methods of such multiple transmission--namely, the simultaneous dispatch of the two communications in opposite directions over the same wire, or the dispatch of both at once in the same direction--gave plenty of play to ingenuity. Prescott's Elements of the Electric Telegraph, a standard work in its day, described "a method of simultaneous transmission invented by T. A. Edison, of New Jersey, in 1873," and says of it: "Its peculiarity consists in the fact that the signals are transmitted in one direction by reversing the polarity of a constant current, and in the opposite direction by increasing or decreasing the strength of the same current." Herein lay the germ of the Edison quadruplex. It is also noted that "In 1874 Edison invented a method of simultaneous transmission by induced currents, which has given very satisfactory results in experimental trials." Interest in the duplex as a field of invention dwindled, however, as the quadruplex loomed up, for while the one doubled the capacity of a circuit, the latter created three "phantom wires," and thus quadruplexed the working capacity of any line to which it was applied. As will have been gathered from the above, the principle embodied in the quadruplex is that of working over the line with two currents from each end that differ from each other in strength or nature, so that they will affect only instruments adapted to respond to just such currents and no others; and by so arranging the receiving apparatus as not to be affected by the currents transmitted from its own end of the line. Thus by combining instruments that respond only to variation in the strength of current from the distant station, with instruments that respond only to the change in the direction of current from the distant station, and by grouping a pair of these at each end of the line, the quadruplex is the result. Four sending and four receiving operators are kept busy at each end, or eight in all. Aside from other material advantages, it is estimated that at least from $15,000,000 to $20,000,000 has been saved by the Edison quadruplex merely in the cost of line construction in America.

The quadruplex has not as a rule the same working efficiency that four separate wires have. This is due to the fact that when one of the receiving operators is compelled to "break" the sending operator for any reason, the "break" causes the interruption of the work of eight operators, instead of two, as would be the case on a single wire. The working efficiency of the quadruplex, therefore, with the apparatus in good working condition, depends entirely upon the skill of the operators employed to operate it. But this does not reflect upon or diminish the ingenuity required for its invention. Speaking of the problem involved, Edison said some years later to Mr. Upton, his mathematical assistant, that "he always considered he was only working from one room to another. Thus he was not confused by the amount of wire and the thought of distance."

The immense difficulties of reducing such a system to practice may be readily conceived, especially when it is remembered that the "line" itself, running across hundreds of miles of country, is subject to all manner of atmospheric conditions, and varies from moment to moment in its ability to carry current, and also when it is borne in mind that the quadruplex requires at each end of the line a so-called "artificial line," which must have the exact resistance of the working line and must be varied with the variations in resistance of the working line. At this juncture other schemes were fermenting in his brain; but the quadruplex engrossed him. "This problem was of most difficult and complicated kind, and I bent all my energies toward its solution. It required a peculiar effort of the mind, such as the imagining of eight different things moving simultaneously on a mental plane, without anything to demonstrate their efficiency." It is perhaps hardly to be wondered at that when notified he would have to pay 12 1/2 per cent. extra if his taxes in Newark were not at once paid, he actually forgot his own name when asked for it suddenly at the City Hall, lost his place in the line, and, the fatal hour striking, had to pay the surcharge after all!

So important an invention as the quadruplex could not long go begging, but there were many difficulties connected with its introduction, some of which are best described in Mr. Edison's own words: "Around 1873 the owners of the Automatic Telegraph Company commenced negotiations with Jay Gould for the purchase of the wires between New York and Washington, and the patents for the system, then in successful operation. Jay Gould at that time controlled the Atlantic & Pacific Telegraph Company, and was competing with the Western Union and endeavoring to depress Western Union stock on the Exchange. About this time I invented the quadruplex. I wanted to interest the Western Union Telegraph Company in it, with a view of selling it, but was unsuccessful until I made an arrangement with the chief electrician of the company, so that he could be known as a joint inventor and receive a portion of the money. At that time I was very short of money, and needed it more than glory. This electrician appeared to want glory more than money, so it was an easy trade. I brought my apparatus over and was given a separate room with a marble-tiled floor, which, by-the-way, was a very hard kind of floor to sleep on, and started in putting on the finishing touches.

"After two months of very hard work, I got a detail at regular times of eight operators, and we got it working nicely from one room to another over a wire which ran to Albany and back. Under certain conditions of weather, one side of the quadruplex would work very shakily, and I had not succeeded in ascertaining the cause of the trouble. On a certain day, when there was a board meeting of the company, I was to make an exhibition test. The day arrived. I had picked the best operators in New York, and they were familiar with the apparatus. I arranged that if a storm occurred, and the bad side got shaky, they should do the best they could and draw freely on their imaginations. They were sending old messages. About 1, o'clock everything went wrong, as there was a storm somewhere near Albany, and the bad side got shaky. Mr. Orton, the president, and Wm. H. Vanderbilt and the other directors came in. I had my heart trying to climb up around my oesophagus. I was paying a sheriff five dollars a day to withhold judgment which had been entered against me in a case which I had paid no attention to; and if the quadruplex had not worked before the president, I knew I was to have trouble and might lose my machinery. The New York Times came out next day with a full account. I was given $5000 as part payment for the invention, which made me easy, and I expected the whole thing would be closed up. But Mr. Orton went on an extended tour just about that time. I had paid for all the experiments on the quadruplex and exhausted the money, and I was again in straits. In the mean time I had introduced the apparatus on the lines of the company, where it was very successful.

"At that time the general superintendent of the Western Union was Gen. T. T. Eckert (who had been Assistant Secretary of War with Stanton). Eckert was secretly negotiating with Gould to leave the Western Union and take charge of the Atlantic & Pacific--Gould's company. One day Eckert called me into his office and made inquiries about money matters. I told him Mr. Orton had gone off and left me without means, and I was in straits. He told me I would never get another cent, but that he knew a man who would buy it. I told him of my arrangement with the electrician, and said I could not sell it as a whole to anybody; but if I got enough for it, I would sell all my interest in any SHARE I might have. He seemed to think his party would agree to this. I had a set of quadruplex over in my shop, 10 and 12 Ward Street, Newark, and he arranged to bring him over next evening to see the apparatus. So the next morning Eckert came over with Jay Gould and introduced him to me. This was the first time I had ever seen him. I exhibited and explained the apparatus, and they departed. The next day Eckert sent for me, and I was taken up to Gould's house, which was near the Windsor Hotel, Fifth Avenue. In the basement he had an office. It was in the evening, and we went in by the servants' entrance, as Eckert probably feared that he was watched. Gould started in at once and asked me how much I wanted. I said: `Make me an offer.' Then he said: `I will give you $30,000.' I said: `I will sell any interest I may have for that money,' which was something more than I thought I could get. The next morning I went with Gould to the office of his lawyers, Sherman & Sterling, and received a check for $30,000, with a remark by Gould that I had got the steamboat Plymouth Rock, as he had sold her for $30,000 and had just received the check. There was a big fight on between Gould's company and the Western Union, and this caused more litigation. The electrician, on account of the testimony involved, lost his glory. The judge never decided the case, but went crazy a few months afterward." It was obviously a characteristically shrewd move on the part of Mr. Gould to secure an interest in the quadruplex, as a factor in his campaign against the Western Union, and as a decisive step toward his control of that system, by the subsequent merger that included not only the Atlantic & Pacific Telegraph Company, but the American Union Telegraph Company.

Nor was Mr. Gould less appreciative of the value of Edison's automatic system. Referring to matters that will be taken up later in the narrative, Edison says: "After this Gould wanted me to help install the automatic system in the Atlantic & Pacific company, of which General Eckert had been elected president, the company having bought the Automatic Telegraph Company. I did a lot of work for this company making automatic apparatus in my shop at Newark. About this time I invented a district messenger call- box system, and organized a company called the Domestic Telegraph Company, and started in to install the system in New York. I had great difficulty in getting subscribers, having tried several canvassers, who, one after the other, failed to get sub- scribers. When I was about to give it up, a test operator named Brown, who was on the Automatic Telegraph wire between New York and Washington, which passed through my Newark shop, asked permission to let him try and see if he couldn't get subscribers. I had very little faith in his ability to get any, but I thought I would give him a chance, as he felt certain of his ability to succeed. He started in, and the results were surprising. Within a month he had procured two hundred subscribers, and the company was a success. I have never quite understood why six men should fail absolutely, while the seventh man should succeed. Perhaps hypnotism would account for it. This company was sold out to the Atlantic & Pacific company." As far back as 1872, Edison had applied for a patent on district messenger signal boxes, but it was not issued until January, 1874, another patent being granted in September of the same year. In this field of telegraph application, as in others, Edison was a very early comer, his only predecessor being the fertile and ingenious Callahan, of stock-ticker fame. The first president of the Gold & Stock Telegraph Company, Elisha W. Andrews, had resigned in 1870 in order to go to England to introduce the stock ticker in London. He lived in Englewood, New Jersey, and the very night he had packed his trunk the house was burglarized. Calling on his nearest friend the next morning for even a pair of suspenders, Mr. Andrews was met with regrets of inability, because the burglars had also been there. A third and fourth friend in the vicinity was appealed to with the same dishearten- ing reply of a story of wholesale spoliation. Mr. Callahan began immediately to devise a system of protection for Englewood; but at that juncture a servant-girl who had been for many years with a family on the Heights in Brooklyn went mad suddenly and held an aged widow and her daughter as helpless prisoners for twenty-four hours without food or water. This incident led to an extension of the protective idea, and very soon a system was installed in Brooklyn with one hundred subscribers. Out of this grew in turn the district messenger system, for it was just as easy to call a messenger as to sound a fire-alarm or summon the police. To-day no large city in America is without a service of this character, but its function was sharply limited by the introduction of the telephone.

Returning to the automatic telegraph it is interesting to note that so long as Edison was associated with it as a supervising providence it did splendid work, which renders the later neglect of automatic or "rapid telegraphy" the more remarkable. Reid's standard Telegraph in America bears astonishing testimony on this point in 1880, as follows: "The Atlantic & Pacific Telegraph Company had twenty-two automatic stations. These included the chief cities on the seaboard, Buffalo, Chicago, and Omaha. The through business during nearly two years was largely transmitted in this way. Between New York and Boston two thousand words a minute have been sent. The perforated paper was prepared at the rate of twenty words per minute. Whatever its demerits this system enabled the Atlantic & Pacific company to handle a much larger business during 1875 and 1876 than it could otherwise have done with its limited number of wires in their then condition." Mr. Reid also notes as a very thorough test of the perfect practicability of the system, that it handled the President's message, December 3, 1876, of 12,600 words with complete success. This long message was filed at Washington at 1.05 and delivered in New York at 2.07. The first 9000 words were transmitted in forty-five minutes. The perforated strips were prepared in thirty minutes by ten persons, and duplicated by nine copyists. But to-day, nearly thirty- five years later, telegraphy in America is still practically on a basis of hand transmission!

Of this period and his association with Jay Gould, some very interesting glimpses are given by Edison. "While engaged in putting in the automatic system, I saw a great deal of Gould, and frequently went uptown to his office to give information. Gould had no sense of humor. I tried several times to get off what seemed to me a funny story, but he failed to see any humor in them. I was very fond of stories, and had a choice lot, always kept fresh, with which I could usually throw a man into convulsions. One afternoon Gould started in to explain the great future of the Union Pacific Railroad, which he then controlled. He got a map, and had an immense amount of statistics. He kept at it for over four hours, and got very enthusiastic. Why he should explain to me, a mere inventor, with no capital or standing, I couldn't make out. He had a peculiar eye, and I made up my mind that there was a strain of insanity some- where. This idea was strengthened shortly afterward when the Western Union raised the monthly rental of the stock tickers. Gould had one in his house office, which he watched constantly. This he had removed, to his great inconvenience, because the price had been advanced a few dollars! He railed over it. This struck me as abnormal. I think Gould's success was due to abnormal development. He certainly had one trait that all men must have who want to succeed. He collected every kind of information and statistics about his schemes, and had all the data. His connection with men prominent in official life, of which I was aware, was surprising to me. His conscience seemed to be atrophied, but that may be due to the fact that he was contending with men who never had any to be atrophied. He worked incessantly until 12 or 1 o'clock at night. He took no pride in building up an enterprise. He was after money, and money only. Whether the company was a success or a failure mattered not to him. After he had hammered the Western Union through his opposition company and had tired out Mr. Vanderbilt, the latter retired from control, and Gould went in and consolidated his company and controlled the Western Union. He then repudiated the contract with the Automatic Telegraph people, and they never received a cent for their wires or patents, and I lost three years of very hard labor. But I never had any grudge against him, because he was so able in his line, and as long as my part was successful the money with me was a secondary consideration. When Gould got the Western Union I knew no further progress in telegraphy was possible, and I went into other lines." The truth is that General Eckert was a conservative --even a reactionary--and being prejudiced like many other American telegraph managers against "machine telegraphy," threw out all such improvements.

The course of electrical history has been variegated by some very remarkable litigation; but none was ever more extraordinary than that referred to here as arising from the transfer of the Automatic Telegraph Company to Mr. Jay Gould and the Atlantic & Pacific Telegraph Company. The terms accepted by Colonel Reiff from Mr. Gould, on December 30, 1874, provided that the purchasing telegraph company should increase its capital to $15,000,000, of which the Automatic interests were to receive $4,000,000 for their patents, contracts, etc. The stock was then selling at about 25, and in the later consolidation with the Western Union "went in" at about 60; so that the real purchase price was not less than $1,000,000 in cash. There was a private arrangement in writing with Mr. Gould that he was to receive one-tenth of the "result" to the Automatic group, and a tenth of the further results secured at home and abroad. Mr. Gould personally bought up and gave money and bonds for one or two individual interests on the above basis, including that of Harrington, who in his representative capacity executed assignments to Mr. Gould. But payments were then stopped, and the other owners were left without any compensation, although all that belonged to them in the shape of property and patents was taken over bodily into Atlantic & Pacific hands, and never again left them. Attempts at settlement were made in their behalf, and dragged wearily, due apparently to the fact that the plans were blocked by General Eckert, who had in some manner taken offence at a transaction effected without his active participation in all the details. Edison, who became under the agreement the electrician of the Atlantic & Pacific Telegraph Company, has testified to the unfriendly attitude assumed toward him by General Eckert, as president. In a graphic letter from Menlo Park to Mr. Gould, dated February 2, 1877, Edison makes a most vigorous and impassioned complaint of his treatment, "which, acting cumulatively, was a long, unbroken disappointment to me"; and he reminds Mr. Gould of promises made to him the day the transfer had been effected of Edison's interest in the quadruplex. The situation was galling to the busy, high-spirited young inventor, who, moreover, "had to live"; and it led to his resumption of work for the Western Union Telegraph Company, which was only too glad to get him back. Meantime, the saddened and perplexed Automatic group was left unpaid, and it was not until 1906, on a bill filed nearly thirty years before, that Judge Hazel, in the United States Circuit Court for the Southern District of New York, found strongly in favor of the claimants and ordered an accounting. The court held that there had been a most wrongful appropriation of the patents, including alike those relating to the automatic, the duplex, and the quadruplex, all being included in the general arrangement under which Mr. Gould had held put his tempting bait of $4,000,000. In the end, however, the complainant had nothing to show for all his struggle, as the master who made the accounting set the damages at one dollar!

Aside from the great value of the quadruplex, saving millions of dollars, for a share in which Edison received $30,000, the automatic itself is described as of considerable utility by Sir William Thomson in his juror report at the Centennial Exposition of 1876, recommending it for award. This leading physicist of his age, afterward Lord Kelvin, was an adept in telegraphy, having made the ocean cable talk, and he saw in Edison's "American Automatic," as exhibited by the Atlantic & Pacific company, a most meritorious and useful system. With the aid of Mr. E. H. Johnson he made exhaustive tests, carrying away with him to Glasgow University the surprising records that he obtained. His official report closes thus: "The electromagnetic shunt with soft iron core, invented by Mr. Edison, utilizing Professor Henry's discovery of electromagnetic induction in a single circuit to produce a momentary reversal of the line current at the instant when the battery is thrown off and so cut off the chemical marks sharply at the proper instant, is the electrical secret of the great speed he has achieved. The main peculiarities of Mr. Edison's automatic telegraph shortly stated in conclusion are: (1) the perforator; (2) the contact- maker; (3) the electromagnetic shunt; and (4) the ferric cyanide of iron solution. It deserves award as a very important step in land telegraphy." The attitude thus disclosed toward Mr. Edison's work was never changed, except that admiration grew as fresh inventions were brought forward. To the day of his death Lord Kelvin remained on terms of warmest friendship with his American co-laborer, with whose genius he thus first became acquainted at Philadelphia in the environment of Franklin.

It is difficult to give any complete idea of the activity maintained at the Newark shops during these anxious, harassed years, but the statement that at one time no fewer than forty-five different inventions were being worked upon, will furnish some notion of the incandescent activity of the inventor and his assistants. The hours were literally endless; and upon one occasion, when the order was in hand for a large quantity of stock tickers, Edison locked his men in until the job had been finished of making the machine perfect, and "all the bugs taken out," which meant sixty hours of unintermitted struggle with the difficulties. Nor were the problems and inventions all connected with telegraphy. On the contrary, Edison's mind welcomed almost any new suggestion as a relief from the regular work in hand. Thus: "Toward the latter part of 1875, in the Newark shop, I invented a device for multiplying copies of letters, which I sold to Mr. A. B. Dick, of Chicago, and in the years since it has been universally introduced throughout the world. It is called the `Mimeograph.' I also invented devices for and introduced paraffin paper, now used universally for wrapping up candy, etc." The mimeograph employs a pointed stylus, used as in writing with a lead-pencil, which is moved over a kind of tough prepared paper placed on a finely grooved steel plate. The writing is thus traced by means of a series of minute perforations in the sheet, from which, as a stencil, hundreds of copies can be made. Such stencils can be prepared on typewriters. Edison elaborated this principle in two other forms--one pneumatic and one electric--the latter being in essence a reciprocating motor. Inside the barrel of the electric pen a little plunger, carrying the stylus, travels to and fro at a very high rate of speed, due to the attraction and repulsion of the solenoid coils of wire surrounding it; and as the hand of the writer guides it the pen thus makes its record in a series of very minute perforations in the paper. The current from a small battery suffices to energize the pen, and with the stencil thus made hundreds of copies of the document can be furnished. As a matter of fact, as many as three thousand copies have been made from a single mimeographic stencil of this character.



BeginningPreviousHomeNextEnd


Return to the Thomas A Edison in Menlo Park index

Return to The Metuchen Edison History Features index

Return to J Halpin CPA page

Last updated by Jim Halpin on 9/17/99.